
Windows Resource Limits – What Limits?
One of the most common problems that newcomers to
Delphi experience is the dreaded ‘Error creating
window’ message. The reason for this message is not a
limitation of Delphi, but a limitation of the operating
system (Windows 3.1x), as I will continue to explain.

This problem is most easily demonstrated when
using the TTabbedNotebook component, or in MDI appli-
cations. Normally the scenario is that the overzealous
Delphi developer fills the notebook pages or MDI child
windows with too many controls. When running the
application and paging through the notebook, or
creating new MDI child windows, the error message
gets displayed.

So why does it happen? Windows controls, eg list
boxes and edit controls, make use of your application’s
local heap to varying degrees. In particular, edit con-
trols store their text in the local heap, although memo
controls don’t (thanks to some VCL setup code). The
local heap is a limited resource and over-use may result
in the failure to allocate the necessary data structures
in the local heap, leading to a failure to create a window.

A second factor is that the Windows operating
system has a global resource limit: a maximum number
of windows that can be created. This seems to be a
problem particularly with RAD tools, where many win-
dows can be easily created. According to the Microsoft
KnowledgeBase document Q112860 How to Optimize
Memory Management in VB 3.0 for Windows, Windows
3.1 allows around 600 windows to be created at any one
time. Effectively, this limit is around 300-400 per appli-
cation. This might seem more than enough, but bear in
mind that every icon and its title on the desktop, the
desktop itself, every other open application and its
associated controls, as well as every windowed control
in your application, uses window handles.

Here’s an example. The TTabbedNoteBook component
only creates window handles as each page becomes
active. However, once the page is displayed, the
windows of previously active pages are not destroyed.
Should your application contain a TabbedNotebook with
5-10 pages, each page containing up to 40 edit controls
(as is sometimes the case in address book applica-
tions), around 300 window handles for this application
alone could exist after paging has occurred. At this
point an exception will occur: ‘Error creating Window’
(EOutofResources). This exception will occur in a similar
way irrespective of which limit is reached first.

So how do we solve the problem? Probably the
easiest solution is to recycle controls (first proposed

by Mike Toms of the Borland/Digital support desk, UK)
by re-using existing controls. This involves changing
the parent property of the control as you turn pages.
In TabbedNotebooks this is very easy. However, the
developer needs to keep track of the re-sizing and
re-positioning of the controls. Listing 1 shows some
example code which demonstrates the principle.

The second solution is slightly more robust and
involves surprisingly little code when implemented for
TabbedNotebooks – see Listing 2. When looking at this
code you may notice the strange cast of TWinControl to
THintWindow. This is because it is the only component
which gives public access to the protected method
DestroyHandle (ReleaseHandle just calls DestroyHandle).
The DestroyHandle releases the window handle of the
control, but it still keeps all the other properties of the
control safely in the OOP component wrapper.
C++/C/VB developers might say, “Yes, but what about
the contents of edit controls and list boxes etc?”. Well
the VCL creators were ahead of us – it is all preserved
regardless of the updates between creation and
destruction. This code could also be used in a TNotebook
with a TTabset with little modification: see Listing 3.

In MDI applications things are slightly more difficult,
but the principle stays the same. The idea is to destroy
the window controls but still continue to display an
image of the window’s client area when the window is
not active. The code in Listing 4 demonstrates the
principle but could be improved upon. Note the use of
the GetFormImage; again the creators of the VCL
provided an easy way of solving the problem by getting
a bitmap of the form’s image. The MDI child’s client
area is filled with a TPanel which contains all the

Tips
& Tricks

procedure TForm1.TabbedNotebook1Change(Sender:
 TObject; NewTab: Integer; var AllowChange: Boolean);
var PresentPage, NewPage : TWinControl;
begin
 if Sender is TTabbedNotebook then begin
 with TTabbedNotebook(Sender) do begin
 PresentPage :=
 TWinControl(Pages.Objects[PageIndex]);
 LockWindowUpdate(Handle);
 NewPage := TWinControl(Pages.Objects[NewTab]);
 while PresentPage.ControlCount > 0 do
 PresentPage.Controls[0].Parent := NewPage;
 LockWindowUpdate(0);
 end;
 end;
end;

➤ Listing 1

procedure TForm1.TabbedNotebook1Change(Sender:
 TObject; NewTab: Integer; var AllowChange: Boolean);
var aPage: TWinControl;
begin
 if Sender is TTabbedNotebook then
 with TTabbedNotebook(Sender) do begin
 aPage := TWinControl(Pages.Objects[PageIndex]);
 LockWindowUpdate(Handle);
 THintWindow(aPage).ReleaseHandle;
 TWinControl(Pages.Objects[NewTab]).HandleNeeded;
 LockWindowUpdate(0);
 end;
end;

➤ Listing 2

46 The Delphi Magazine Issue 4

controls. This is a technique used in OWL 2.5 and MFC,
which makes it easier to destroy the child controls by
destroying their parent, the Panel.

I hope you will find this useful in your development.

Contributed by Roy Nelson,
Borland UK European Technical Team

Big Arrays
64k limitation on arrays too small? Can’t wait for Delphi
32? Try the array object on this issue’s free disk (file
ARRAYU.PAS), which is limited only by the size of
Windows’ accessible memory. Apart from a call to the

procedure TForm1.TabSet1Change(Sender: TObject;
 NewTab: Integer; var AllowChange: Boolean);
var aPage: TWinControl;
begin
 LockWindowUpdate(Handle);
 if Sender is TTabset then
 with TTabSet(Sender) do begin
 if TabIndex > -1 then begin
 aPage := TWinControl(Tabs.Objects[TabIndex]);
 THintWindow(aPage).ReleaseHandle;
 TWinControl(Tabs.Objects[NewTab]).HandleNeeded;
 end;
 end;
 LockWindowUpdate(0);
end;

➤ Listing 3

procedure TMDIChild.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caFree;
end;

procedure TMDIChild.FormDeactivate(Sender: TObject);
begin
 aBitmap := GetFormImage;
 LockWindowUpdate(Handle);
 THintWindow(Panel1).ReleaseHandle;
 LockWindowUpdate(Handle);
end;

procedure TMDIChild.FormPaint(Sender: TObject);
begin
 if Assigned(aBitmap) then Canvas.Draw(0,0,aBitmap);
end;

procedure TMDIChild.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer);
begin
 FormResize(nil);
end;

procedure TMDIChild.FormResize(Sender: TObject);
var ParentForm: TForm;
begin
 if Assigned(aBitmap) then aBitmap.Free;
 aBitmap := nil;
 LockWindowUpdate(Handle);
 Panel1.HandleNeeded;
 ParentForm := GetParentForm(Panel1);
 ParentForm.ActiveControl := Panel1;
 with Panel1 do begin
 BringToFront;
 Visible := false;
 Visible := True;
 end;
 LockWindowUpdate(0);
end;

➤ Listing 4

constructor and destructor and a slightly different
declaration, this object can be treated just like any
other array, only much bigger.

Let’s take an example: you want an array of 100,000
Doubles. Trying array[1..100000] of Double won’t work.
Instead, do the following: take the ARRAYU.PAS file on
the disk and change the first type definition from:

TItemType = Longint;

to:

TItemType = Double;

This type defines what the array object will contain.
Where you would declare the array itself as:

MyArray: array[1..100000] of Double;

instead declare:

MyArray: TArray;

Before you use it for the first time, call:

MyArray := TArray.Create(1, 100000);

where the two parameters are the upper and lower
limits, and after you are done with it call MyArray.Free.
Apart from that, the object can be accessed like any
normal array:

if MyArray[1] < 5 then MyArray[2] := 20.2;

With Delphi 32 not that long off, some conditional
compilation can be employed to cater for this object
and proper large arrays when available. There is an
example project on the disk called HUGEARAY.DPR
which shows the array in use. It allows you to allocate
an array of as many Longints as you like, populate them
with their element number and then list as many of
them as you please. Here’s the code snippet that sets
the array up:

Arr := TArray.Create(LowerBound.Value,
 UpperBound.Value);
for Loop := Arr.Low to Arr.High do
 Arr[Loop] := Loop;

Some (currently read-only) properties of the object
that are useful include Size, Low and High, which return
the number of elements, lowest element number and
highest element number respectively.

It wouldn’t take forever to modify the Size property
so that you could dynamically extend and contract the
array at runtime with a combination of reallocating the
memory occupied by the array (GlobalRealloc) and
copying the old array into it (hmemcpy).

Contributed by Brian Long (CompuServe 76004,3437)

48 The Delphi Magazine Issue 4

Thanks to Hallvard Vassbotn for pointing out an
oversight in Issue 3’s Custom Clipboard Formats

article. In the article, the TBirthDay.PasteFromClipBoard
method declared a variable Size, which was used in
the statement:

if SizeOf(FPersonRec) GlobalSize(Data) then
 Size := GlobalSize(Data);

however, the following statement neglected to make
use of the Size variable:

Move(DataPtr^, FPersonRec, SizeOf(FPersonRec));

The correct code should read:

if SizeOf(FPersonRec) GlobalSize(Data) then
 Size := GlobalSize(Data)
else
 Size := SizeOf(FPersonRec);
Move(DataPtr^, FPersonRec, Size);

Also, the outer try..except statement in that same
method was unnecessary. The memory referenced by

Update: Custom Clipboard Formats
by Xavier Pacheco

the Data variable does not have to be freed in this
method since Windows will manage this memory block
already. Listing 1 below shows the corrected version
of the PasteFromClipBoard method (also on the disk).

Procedure TYourFormName.HideTitlebar;
Var Save : LongInt;
Begin
 If BorderStyle = bsNone then Exit;
 Save := GetWindowLong(Handle,gwl_Style);
 If (Save and ws_Caption) = ws_Caption then Begin
 Case BorderStyle of
 bsSingle,
 bsSizeable :
 SetWindowLong(Handle,gwl_Style,Save and
 (Not(ws_Caption)) or ws_border);
 bsDialog :
 SetWindowLong(Handle,gwl_Style,Save and
 (Not(ws_Caption)) or ds_modalframe or
 ws_dlgframe);
 End;
 Height := Height - getSystemMetrics(sm_cyCaption);
 Refresh;
 End;
end;

Procedure TYourFormName.ShowTitlebar;
Var Save : LongInt;
begin
 If BorderStyle = bsNone then Exit;
 Save := GetWindowLong(Handle,gwl_Style);
 If (Save and ws_Caption) <> ws_Caption then Begin
 Case BorderStyle of
 bsSingle,
 bsSizeable :
 SetWindowLong(Handle,gwl_Style,Save or
 ws_Caption or ws_border);
 bsDialog :
 SetWindowLong(Handle,gwl_Style,Save or
 ws_Caption or ds_modalframe or ws_dlgframe);
 End;
 Height := Height + getSystemMetrics(sm_cyCaption);
 Refresh;
 End;
end;

➤ Listing 5Hiding The Titlebar
A lot of people are asking if it is posible to hide and then
show the titlebar from a window in a Delphi application
while the application is running. The two procedures in
Listing 5 show how to do this.

Contributed by Claus Ziegler from Denmark (email
ziegler@winboss.dk)

Creating Paradox Auto-Increment Fields
Listing 6 shows a method for creating a Paradox table
containing an auto-increment field within a Delphi
application, using SQL with a TQuery. Does anyone know
how to do this for a TTAble, just using BDE calls?

Stephen Thompson (Steve@DDEN.DEMON.CO.UK)

with Query1 do begin
 DatabaseName := ’DBDemos’;
 with SQL do begin
 Clear;
 Add(’CREATE TABLE “PDoxTbl.db” (ID AUTOINC,’);
 Add(’Name CHAR(255),’);
 Add(’PRIMARY KEY(ID))’);
 ExecSQL;
 Clear;
 Add(’CREATE INDEX ByName ON “PDoxTbl.db” (Name)’);
 ExecSQL
 end;
end;

➤ Listing 6

procedure TBirthday.PasteFromClipBoard;
var
 Data: THandle;
 DataPtr: Pointer;
 Size: Integer;
begin
 { Get the data on the clipboard }
 Data := ClipBoard.GetAsHandle(CF_BIRTHDAY);
 { Exit is unsuccessful }
 if Data = 0 then Exit;
 { Lock the Global memory object }
 DataPtr := GlobalLock(Data);
 try
 if SizeOf(FPersonRec) > GlobalSize(Data) then
 Size := GlobalSize(Data)
 else
 Size := SizeOf(FPersonRec);
 { Copy contents of DataPtr to Buffer }
 Move(DataPtr^, FPersonRec, Size);
 finally
 GlobalUnlock(Data); {Unlock global memory object}
 end;
end;

➤ Listing 1

November 1995 The Delphi Magazine 51

	Windows Resource Limits - What Limits?
	Big Arrays
	Hiding The Titlebar
	Creating Paradox Auto-Increment Fields

